
Doing Small-scale Agile Projects Efficiently and
Profitably

Ilkka Laukkanen <ilkka.laukkanen@futurice.com>

Futurice Oy

1 Introduction

Futurice is a software agency of about 140 people with offices in Helsinki and Tampere,
Berlin and London. We offer consulting, design, development and training services to
clients from diverse industries.

Our projects are generally done on a tight schedule and without complete, concrete
specifications up front, instead evolving quickly from a concept to a polished product.
In terms of project outcomes and customer satisfaction we have been very successful in
working in this agile manner. The aim of this paper is to document some of the methods
we’ve used to be agile and to keep projects on time and in budget while helping our
customers with their business, and keeping both them and our employees happy while
doing it. These patterns that are key parts in our way of working and contribute greatly
to being successful and profitable while working on small-scale projects in an agile
way.

In the context of this discussion, efficiency is taken as a qualitative measure of the
time during which employees assigned to a project are actually able to do useful project
work, in proportion to the billable hours they spend on that project. Efficiency is de-
creased when developers or designers have to hunt for information, write exhaustive
documentation instead of new features–unless documentation itself is the aim–or gen-
erally do anything that isn’t directly advancing the project towards its stated goal, and
is instead waste [5]. Some inefficiency is inevitable, and some is necessary: sticky notes
have to be moved on Kanban boards, project email has to be read and meetings attended
and so on, and this is well and good, but increasing efficiency would allow to shorten
project timespans, which would make for more compelling quotations.

Profitability is defined in the short term as avoiding overruns–in the case of black
box projects–and in the long term as being able to charge realistic rates despite heavy
competition. Overruns are caused by many things, but generally are due to either solving
the wrong problem, or solving the right problem but in the wrong way.

Small-scale here means both brief and of limited scope. Agility is on one hand an
umbrella term for the methods we use, but it is also a desirable element of the customer’s
perception of us.

2 End to End

In our projects customers often present only a preliminary concept, which we then start
to develop and design further. They look for us to help develop the idea into a concrete,



useful product or service and see this plan through to completion. This requires a sense
of ownership of the product, and pride in the work that we do. We want customers to
have the sense that their idea is in good hands and that we care about what comes out
of it. The more we show we care, the more trust is placed in us.

From the customers’ viewpoint, getting everything from consulting and design through
implementation and training to life-cycle management from one place is beneficial, be-
cause it avoids expensive knowledge transfer phases between subcontractors. When
projects are short, the extra effort this requires toward comprehensive documentation
starts to become a prohibitively large fraction of the total project workload.

Internally there needs to be cohesion between design and development throughout
the project. For a given total project budget B, an overrun is guaranteed if a designer
spends 1

2 B coming up with a design that will cost 3
4 B to implement.

For an agency such as ours, building repeat business and keeping customer satisfac-
tion high is important, because a lot of business depends on referrals, recommendations
and reputation. When we take an interest in the customer’s business and actively help
them develop it, we make an investment towards our own future. To achieve this it is
necessary not just to cultivate a capable team, but also an environment where commu-
nication towards to customer is open.

Therefore: when pitching and planning, get input from designers, developers and
people with experience in maintaining systems; come up with the next chapter in the
product’s story and pitch that as well. During the project get developers and designers
working closely together. Use Periodic Demo so everyone knows what is being built
and shares the vision.

This is related to the Cross-Functional Teams pattern [1] in that tight co-operation
between different parts of the organization is needed to keep everybody on track, and
the Vision pattern [4] in that a a shared vision is required, although it is more a joint
effort than a product owner creation.

3 Periodic Demo

When a product is taken from a seed idea to a complete implementation, a lot of commu-
nication is needed to ensure that the thing that is being built matches with the customer’s
perception and need. Verbal or written communication is fraught with the danger of
misunderstandings, omissions and other sources of errors. There is no better way of
showing progress, getting feedback and building a common understanding than hand-
ing the customer a working product as soon as possible, and keeping on handing them
when the product improves and develops.

The customer’s unspoken and undocumented preferences will quickly become ap-
parent as they get to use even a rudimentary demo version of the product. It will also
help determine future direction, as not all ideas that sound good in meetings and on
paper end up translating well in actual use. Furthermore, since the basis for the changes
we end up making is the working product, we have confidence that we’re using the
best, most accurate information available, instead of modifying unrealised plans whose
validity we cannot fully know.



Also, by striving to keep the product in a state where it could conceivably be re-
leased at any time, we force ourselves to do integration at an early stage. Integration is
a major source of technical risk for any project, and doing it early is an effective way to
manage it, as Reinertsen writes in “Managing the Design Factory“, pages 224–229 [7].

Therefore: commit to having a working first version of the product ready for the
customer to use at the end of every iteration.

This pattern is similar to Build Prototypes [2] in that work is being done to better
understand the requirements, especially latent ones, but these products are not thrown
away, instead becoming product increments [3]. In small projects we can refactor very
aggressively to keep the product from becoming prototype spaghetti.

4 No Handoffs

The communication overhead discussed in End to End applies not just between many
subcontractors collaborating on a project, but naturally also between teams and individ-
uals within one company. If a customer comes to a representative with their ideas and
problems, and that representative talks to a team–and in extreme cases maybe that team
then talks either directly or via a proxy to e.g. an overseas team–the process becomes
a game of Chinese whispers. This often resembles the situation described in Periodic
Demo, where consensus cannot be reached due to poor communication, and quality
suffers as a consequence.

This is best remedied by bringing the team close to the customer, both in a geo-
graphic sense and in terms of communication. In quick, small projects it is important
that the team has direct access to the customer, and conversely the customer to the
team. This way the feedback and guidance can be given unimpeded and all the impor-
tant questions asked directly from the people that give the answers.

Intuitively it would seem that this approach results in much of the developers’ time
being spent handling feedback, but this is not necessarily the case. In “Leading Lean
Software Development“ Mary and Tom Poppendieck cite two examples of removing
handoffs resulting in major benefits for the customer (pp. 20–21, 222-223) [6]. Instead
of the team being swamped with feedback, the mental models of the team and the
customer were more aligned, and as a result the customer was more satisfied with the
end product.

The same goes internally too. The less rigid the product definition, the more com-
munication is necessary (see “Managing the Design Factory“, pp. 113–115) [7]. This
means that team members must be in contact at all times when working with the kind
of vague specifications we usually have.

Therefore: remove impediments to direct communication and foster team engage-
ment with the customer, but make sure this does not swallow too much time by:

– having regular face-to-face meetings;
– having team members receive and respond to feedback;
– having the customer provide contacts for direct technical questions.

This requires a somewhat active customer, but our experience is that they are often
willing to get engaged in these less rigidly defined projects, being invested in them and
excited about them to begin with.



References

1. Cross-functional teams. ScrumPLoP published patterns. Website, referenced Feb 9 2012.
https://sites.google.com/a/scrumplop.org/published-patterns/team-pattern-language/cross-
functional-team.

2. James O. Coplien and Neil B. Harrison. Organisational patterns: Build prototypes. Wiki,
referenced Feb 2 2012. http://orgpatterns.wikispaces.com/BuildPrototypes.

3. Lachlan Heasman. Regular product increment. ScrumPLoP published patterns. Website, refer-
enced Mar 5 2012. https://sites.google.com/a/scrumplop.org/published-patterns/value-stream-
pattern-language/regular-product-increment.

4. Lachlan Heasman. Vision. ScrumPLoP published patterns. Website, referenced Feb
9 2012. https://sites.google.com/a/scrumplop.org/published-patterns/value-stream-pattern-
language/vision.

5. Mary Poppendieck and Tom Poppendieck. Lean Software Development. Addison-Wesley,
2003.

6. Mary Poppendieck and Tom Poppendieck. Leading Lean Software Development. Addison-
Wesley, 2010.

7. Donald G. Reinertsen. Managing the Design Factory. The Free Press, 1997.


